字体:大 中 小
护眼
关灯
上一页
目录
下一页
第四百四十一章 核聚变的不完善磁约束,能者多劳?能者担责! (第3/4页)
/br> “这种磁这种磁干涉手段也可以和托卡马克的磁发生装置叠加使用。” “也就是一套磁场设备,可以用来干涉强湮灭力场,同时也可以用来约束内部的核聚变反应。” “这是其中一点。” “另外,我们并不需要托卡马克的完全磁约束……” 他讲到了重点。 这一句话说出来,就让很多学者瞪大了眼睛,国际上有关核聚变的研究都围绕托卡马克装置,而托卡马克装置是进行完全的磁约束,也就是螺旋磁场形成一个闭合循环。 现在王浩说不需要‘完全磁约束’,等于说是不需要‘闭环磁场’。 这是全新的技术理论。 王浩认真道,“我的想法是以磁约束的空当,作为装置的主要输出端。如果磁约束有空当,肯定会承受非常大的压力。” “但是,装置内部是反重力场。” “大家知道,强反重力场最高能把粒子活跃度降低一倍,反应速度则能降低三倍,甚至四倍以上。” “这样,我们就能通过调整内部反重力场强度,来对内部聚变反应的速率进行控制。” “外层,则有吸收能量的强湮灭力场。” “输出端要承受很大的压力,中子撞击,α粒子的影响都是问题,所以还需要结合高端材料……” “丁宗权教授的团队,研究出一种升阶高熔点、韧性的铁钨材料,熔点达到了4380摄氏度……” 后续都是有关材料以及其他技术的介绍。 王浩对于反应容器的介绍,主要就是说明磁场、反重力场以及强湮灭力场对于核聚变反应的协调控制。 他还提出了‘不完善磁约束’的想法。 托卡马克装置是利用磁场对于反应进行完全控制,同时,也带来了一系列问题。 比如,温度控制。 比如,原料问题。 托卡马克的完全磁约束限制了反应速率,使得氘氘反应变得‘几乎不可能’,只是点火都是个大难题。 现在已经解决了点火问题,剩下的就是反应效率问题了。 氘氘反应,是核聚变的最佳选择。 原因很简单,自然界几乎不存在天然的氚,人工制造的成本高昂、产量极为有限。 氘则不受限制,海水中就大量存在。 核聚变之所以能够被称为无限能源,是因为海水中的氘对人类来说,几乎是“无限的”。 ‘不完善磁约束’的设计,还有一个好处就是解决了α粒子问题。 核聚变反应会产生α粒子。 α粒子是带电粒子,自然会受到磁场影响。 在完全磁约束的环境下,α粒子又是一种需要被去除的杂质,否则会降低聚变反应率。 ‘不完善磁约束’环境,磁场就会‘有出口’,α粒子就能够被排出。 …… 上午的会议结束了。 每一个参会的学者的积极性都被调动起来,他们不断讨论着会议中的内容,包括完善的点火技术,包括超导材料技术的突破,也包括王浩的‘不完善磁约束’设计想法。 “虽然还有很多需要攻克的难关,但是能实现‘不完善磁约束’,就解决了大部分难
上一页
目录
下一页